The use of targeted genomic capture and massively parallel sequencing in diagnosis of Chinese Leukoencephalopathies

نویسندگان

  • Xiaole Wang
  • Fang He
  • Fei Yin
  • Chao Chen
  • Liwen Wu
  • Lifen Yang
  • Jing Peng
چکیده

Leukoencephalopathies are diseases with high clinical heterogeneity. In clinical work, it's difficult for doctors to make a definite etiological diagnosis. Here, we designed a custom probe library which contains the known pathogenic genes reported to be associated with Leukoencephalopathies, and performed targeted gene capture and massively parallel sequencing (MPS) among 49 Chinese patients who has white matter damage as the main imaging changes, and made the validation by Sanger sequencing for the probands' parents. As result, a total of 40.8% (20/49) of the patients identified pathogenic mutations, including four associated with metachromatic leukodystrophy, three associated with vanishing white matter leukoencephalopathy, three associated with mitochondrial complex I deficiency, one associated with Globoid cell leukodystrophy (or Krabbe diseases), three associated with megalencephalic leukoencephalopathy with subcortical cysts, two associated with Pelizaeus-Merzbacher disease, two associated with X-linked adrenoleukodystrophy, one associated with Zellweger syndrome and one associated with Alexander disease. Targeted capture and MPS enables to identify mutations of all classes causing leukoencephalopathy. Our study combines targeted capture and MPS technology with clinical and genetic diagnosis and highlights its usefulness for rapid and comprehensive genetic testing in the clinical setting. This method will also expand our knowledge of the genetic and clinical spectra of leukoencephalopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exome sequencing: the sweet spot before whole genomes

The development of massively parallel sequencing technologies, coupled with new massively parallel DNA enrichment technologies (genomic capture), has allowed the sequencing of targeted regions of the human genome in rapidly increasing numbers of samples. Genomic capture can target specific areas in the genome, including genes of interest and linkage regions, but this limits the study to what is...

متن کامل

Identification of a Novel CLCNKB Mutation in an Iranian Family with Bartter Syndrome Type 3.

Bartter syndrome (BS) is a group of uncommon genetic disorders of reabsorption of salt in the cortical thick ascending limb (TAL) of the Henle's loop, typically distinguished by metabolic alkalosis, salt loss, hypokalemia, hyperreninemic hyperaldosteronism and normal blood pressure. Bartter syndrome type 3, recognized as a classic BS (CBS), occurs because of mutations in CLCNKB gene. We enroll...

متن کامل

Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing

Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye diseas...

متن کامل

Targeted Sequencing of Large Genomic Regions with CATCH-Seq

Current target enrichment systems for large-scale next-generation sequencing typically require synthetic oligonucleotides used as capture reagents to isolate sequences of interest. The majority of target enrichment reagents are focused on gene coding regions or promoters en masse. Here we introduce development of a customizable targeted capture system using biotinylated RNA probe baits transcri...

متن کامل

Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia.

Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the Inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016